
1

Model Predictive Control for Quadrotor
Tracking of Moving Landing Platform

Will Cohen

I. MOTIVATION

In the past, package delivery has relied on hub-to-
hub air deliveries with package delivery performed
by delivery vans and human delivery agents. With
the advent of better battery technology, quadrotor
unmanned aerial vehicles (UAVs), and modern con-
trol, it is now feasible to remove the human from
the delivery loop. This new delivery paradigm is
driven by developments in model predictive control
(MPC), wherein a drone is capable of tracking a
delivery vehicle for return, landing, and charging.
Whereas the basic tracking can be performed with
traditional PID controllers, obstacle avoidance, and
the landing process are enabled through MPC. The
latter will be the focus of this paper.

II. PROBLEM STATEMENT

This section will introduce a miniaturized sys-
tem so that future tests on the feasibility of this
controller can be performed in a laboratory envi-
ronment. The drone chosen is the Crazyflie 2.0, a
micro aerial vehicle (MAV) with well researched
system specifications [2]. The landing platform is
assumed to be a 10 cm wide and 20cm long flat
rectangle, with a GPS beacon at its center.

A. Crazyflie System Specifications

The Crazyflie 2.0 moments of inertia, thrust char-
acteristics, and rotor torques of the MAV are derived
in the paper by Förster [2], which are implemented
in the controller later. Cross terms are excluded in
the moment of inertia to simplify the physics. These
characteristics can be found below.

TABLE I: Crazyflie 2.0 Characteristics

Variable Value Unit

Ixx 16.82 ∗ 10−6 kg m2

Iyy 16.89 ∗ 10−6 kg m2

Izz 29.81 ∗ 10−6 kg m2

k1 0.0915
k2 0.0677
k3 5.49 ∗ 10−4

q1 5.96 ∗ 10−3

q2 1.56 ∗ 10−5

The multipliers for the force, ki, and the torques,
qi, are unitless multipliers used to convert the signal
input into a force value. This signal value, x,
has been normalized for inputs x ∈ [0, 1] These
equations are shown below.

fi(x) = k1x
2 + k2x+ k3 (1)

τi(x) = q1x+ q2 (2)

Each of these values in generated in the body
frame of the quadrotor for an individual motor, i ∈
{1, 2, 3, 4}.

B. Physics

For the physics of the quadrotor system, a sim-
plified 3D model with 12 states is used:

[
x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇

]
(3)

An image of this configuration can be found
below:

2

Fig. 1: Quadrotor Coordinate Configuration [3]

These states are further referenced as the follow-
ing aggregations: p = [x, y, z] , η = [φ, θ, ψ] , ṗ =

[ẋ, ẏ, ż] , η̇ =
[
φ̇, θ̇, ψ̇

]
.

The following assumptions are made regarding
the physical model [6]:

1) the body frame of the quadcopter is rigid;
2) the center of the body frame coincides with

the center of gravity;
3) the aerodynamics effects are neglected.

The nonlinear state transition equations are gen-
erated following these assumptions. The transition
for p and η will be dictated by the below equations:

∂p

∂t
= ṗ,

∂η

∂t
= η̇ (4)

In the above equations ṗ and η̇ are the linear and
angular velocities from the state in Equation 3.

In order to calculate the forces acting on the
quadrotor in the inertial frame, the forces must be
rotated out of the body frame. This is done with a
3-2-1 Euler rotation with φ, θ, and ψ. This rotation
matrix can be found below, where c is cosine and
s is sine.

R =

[
cθcψ cψsθsφ−sφcψ cψsθcφ+sψsφ
cθsψ sψsθsφ+cψcφ sψsθcφ−cψsφ
−sθ cθsφ cθcφ

]
(5)

This rotation is applied to the body frame forces
to rotate them into the inertial frame, as shown
below:

mp̈ = R

 0
0

sum(fi)

−
 0

0
−mg

 (6)

In the above equation, fi is the force generated
by each of the 4 rotors, and m is the mass of
the quadrotor. This force can be divided by mass
on both sides and will result in the corresponding
accelerations for the state transition matrix. These
can be seen below.

ẍ = (cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))

4∑
i=1

(fi)

ÿ = (sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ))

4∑
i=1

(fi)

z̈ = cos(θ)cos(φ)

4∑
i=1

(fi)− g

(7)

The rotational accelerations are derived from the
Newton-Euler method [1]:

Iη̈ + η̇ × Iη̇ =

τφτθ
τψ

 (8)

In the above, the three torque quantities are
defined as below, with the motor number corre-
sponding to Figure 1.

τφτθ
τψ

 =

r((f4 + f1)− (f2 − f3))
r((f4 + f3)− (f1 − f2))∑4

i=1(−1)iτi

 (9)

Equation 8 is solved for η̈ to resolve the angular
accelerations shown below.

φ̈ = I−1
xx (τφ + (Izz − Iyy)φ̇)

θ̈ = I−1
yy (τθ + (Ixx − Izz)θ̇)

ψ̈ = I−1
zz (τψ + (Iyy − Ixx)ψ̇)

(10)

This produces the full system of equations, which
can be seen in block form in Appendix B.

III. SYSTEM CHARACTERISTICS
A. Linearization

In order to make the problem more tractable, the
highly non-linear physics from the prior section are
linearized. MATLAB was used symbolically com-
pute the Jacobian of the continuous time nonlinear

3

state transition equation to arrive at the continuous
time linear state and control matrices.

∂ ~f

∂~x
= Ac,

∂ ~f

∂~u
= Bc

This linearization occurs at the hovering equi-
librium and makes use of a small angle approxi-
mation for η. The equilibrium state chosen for the
linearization is at [p, ṗ, η, η̇] = 0. The hovering
input command is determined through a solution
of the linear system of equations that results from
the aforementioned equilibrium, and is chosen to be
ulin = [0.5837, 0.5532, 0.5837, 0.5532].

B. Discretization
In order to implement the controller, the state

transition matrix is manipulated from the form
ẋ = Acx+Bcu to the discrete-time format xk+1 =
Adxk + Bduk for some sampling time Ts. If Ac
is invertible, this can be done numerically with the
below method.

Ad = eAcTs, Bd = A−1
c

(
eAcTs − I

)
However, Ac is not invertible and other methods

must be used. Instead, MATLAB’s c2d.m was used
to convert the continuous time system into discrete
time with a sampling time of 0.01 seconds. This
produces Ad and Bd matrices shown in appendix
A, which will be used in the simulations.

C. Stability
The stability of the linear time invariant (LTI)

system is inspected by examining the spectral radius
of the Ad matrix created in the prior section. On this
analysis provides the below distinct eigenvalues:

spec(Ad) = 1

For a stable discrete time linear system,
spec(Ad) < 1, so this system is unstable [4].

D. Controllability
To check the controllability of the system, the

controllability rank condition is used from the
course notes [4]. These conditions state that the
matrix pair (Ad, Bd) is controllable if they satisfy
the below condition, where n is the number of
states:

rank
[
B AB · · · An−1B

]
= n

For the control matrices found in section III-B,
the controllability matrix is full rank after 3 steps
and that this system is controllable. Since the sys-
tem is unstable but controllable, a controller is
implemented that will drive this quadrotor towards
the reference point, the vehicle landing zone.

IV. CONTROLLER

The model predictive controller designed for this
projects makes use of the linearized system for
tracking the impact of changes on the system as
a whole. In addition to the primary 12 states, 6
error states and 6 measurement states are introduced
that are used for the error calculation. Finally, four
states are added for measuring the current motor
command. The output command is converted to a
change in the commanded state. The controller state
can be seen below.

[∆p,∆ṗ,∆η,∆η̇, ep, eṗ, p, ṗ, u] , ∆u

This state is equivalent to the reference tracking
design 4 discussed in the course notes [5], and im-
plements a rate-based model into the controller. In
this formulation an individual state, xk, is calculated
as shown in the model below.

∆xk = xk − xk−1

Additionally, for a single time step, the controller
designed in section 3 remains valid. This can be
seen below.

∆xk+1 = Axk +Buk −Axk−1 −Buk−1

= A∆xk +B∆uk

The errors in this state are calculated as the
difference between the current state xk and some
reference value r. In this simulation this will be
the position and velocity of the landing platform
moving in the inertial frame.

4

A. State Penalties and Q Parameter Tuning
In order to properly implement an MPC con-

troller, penalties are required for the cost function
the optimization problem. The controller should
minimize the error quantities, ep and eṗ, and drive
the quadrotor towards the reference trajectory and
velocity. Therefore, a Q matrix is chosen that pro-
duces this result, corresponding to the simplified
state vector x below.

Q =

0 0 0 0 0
0 Q1 0 0 0
0 0 Q2 0 0
0 0 0 0 0
0 0 0 0 0

 , x =

∆
ep
eṗ
p
u

In order to choose the coefficients Q1 and Q2,

a simulation is run over the set Q1 ∈ [1, 250] and
Q2 ∈ [0, 2]. Two key characteristics are examined
in this parameter tuning method. The first is the
sum of the mean squared value of the position and
velocity errors, which is shown below in Figure 2.

Fig. 2: Mean Squared Error Parameter Tuning

The second value is the sum of the final distance
and velocity differences, shown in Figure 3. This
error is used to approximate the convergence rate of
each simulation, which was run over 100 time steps,
or 1 second. A weight of 1 and 0.01 were applied
to the final position and velocity, respectively, as
the primary objective is to track the position of the
beacon. The results are below.

Fig. 3: Final Distance Error Parameter Tuning

From this parameter tuning, it was found that
final distance could be minimized near values of
Q1 = 200 and Q2 = 1, without extreme values in
the mean squared error. Ultimately, these were the
Q values chosen for the simulation. An R matrix
with diagonals of 0.01 was chosen arbitrarily to
drive the changes in the controller output to zero
once the position and velocity errors had reached
negligible values.

B. Terminal Conditions
The augmented system is not stabilizable and has

no unique solution to the discrete algebraic Riccati
equation (DARE). However, stability is introduced
with an augmented DARE solution. Two imple-
mentations are chosen and compared in the Results
section. The first is a terminal penalty constructed
from only the DARE solution for the unmodified
state shown in Equation 9. This solution is appended
with zeros for all other augmented states. The
second implementation uses the summation of the
aforementioned DARE solution with the tuned Q
matrix, thereby applying additional terminal penal-
ties to the error terms.

C. Constraints
Making use of MPC’s ability to integrate con-

straints into its design is a key driver behind using
it for the landing approach. With constraints, the
controller is guaranteed to satisfy bounds on the
thrust signal and position such as ez > 0. The state
constraints are as below.

5

|∆ṗ| ≤ 1

ez ≥ 0

0 ≤ ui ≤ 1

(11)

Additional constraints are imposed on the con-
troller output ∆u.

|∆ui| < 0.05 (12)

D. Quadratic Program Design
A quadratic program must be designed based on

the characteristics of the above problem to produce
the MPC outputs. In particular, for a set of predic-
tion steps and control steps, the controller should
produce the optimal control output for the problem
so as to minimize the position and velocity errors
as provided above. A secondary consideration for
the problem was the calculation time, as ideally this
optimization would run in-the-loop of the quadrotor
that is tracking the vehicle. With this in mind,
prediction and control steps of N = 5 were chosen
for the controller. For each step N , the constraints
and controls are stacked such that they form the
below matrices.

X =

x1
x2
...
x5

 , U =

u0
u1
...
u4

 (13)

Matrices are derived for the quadratic program
per prior lectures [5]. These equations are designed
to satisfy the state transition equation xk = Akx0+∑k−1
i=0 A

k−1−iBui, which can be rewritten as X =
SU +Mx0.

S =

B 0 · · · 0
AB B · · · 0

...
...

. . .
...

A4B A3B · · · B

 , M =

A
A2

...
A5

(14)

With these matrices, constraints are specified
on the system as below, using the constraints in
Equation 11, which are stacked in the same way as
Equation 13.

Xmin ≤ X = SU +Mx0 ≤ Xmax

[
S
−S

]
U ≤

[
Xmax −Mx0
−Xmin +Mx0

] (15)

A similar treatment can be provided to the control
constraints. [

I
I

]
U ≤

[
Umax
−Umin

]
(16)

The optimization function that the MPC con-
troller minimizes take the below form.

J5 =

4∑
k=0

xTkQ+ uTkRuk + xT5 Px5 (17)

In Equation 17, Q, R, and P are the state penalty,
control penalty, and terminal penalty, respectively.
To take advantage of the stacked shape of the X
and U values in Equation 13, the Q, R, and P
matrices are converted into block matrix form, as
shown below.

Q̄ =

Q 0 · · · 0 0
0 Q 0 · · · 0
... 0

. . . 0

0
... Q 0

0 0 · · · 0 P

 , R̄ =

R · · · 0
...

. . .
...

0 · · · R

(18)

This conversion changes Equation 17 to the be-
low. The full derivation can be found in [5].

J5 = XT Q̄X + UT R̄U + xT0Qx0

= UTHU + 2qTU + c
(19)

The cost is now a quadratic program in U and
can therefore be solved by numerous methods, such
as dual projected gradient, or through MATLAB’s
quadprog.m. The latter has been chosen for these
simulations for its robustness.

6

V. RESULTS

This section will discuss the results of two trials.
The first is the pursuit of and landing on a platform
moving linearly at 1 m/s, comparing controllers
generated from the two aforementioned terminal
conditions from Section IV-B. The second analysis
will be on the quadrotor tracking a platform moving
in a nonlinear fashion.

A. Linear Motion of Landing Platform
The controller shows good performance for track-

ing in straight line configurations. A landing plat-
form moving 1 m/s in a straight line sees conver-
gence in approximately 4 seconds from a position
1.1 meters away, seen in Figure 4.

(a) DARE Solution

(b) DARE Solution + Tuned Q Matrix

Fig. 4: Quadrotor Tracking Paths

In the above paths, it is clear that the modified
DARE solution induces extra noise into the con-
troller. The path that this controller takes has a
much larger variation in it, which could introduce
instabilities in flight.

(a) DARE Solution

(b) DARE Solution + Tuned Q Matrix

Fig. 5: Quadrotor Control Action

It is clearer to see the noise added by the modified
DARE controller through the control actions. In the
above Figure 5, the DARE-only solution has smooth
control actions that accelerate the quadrotor and
then decelerate it. In the modified DARE solution,
there are non-smooth portions, noticeable in the
∆ui values on the lower part of the chart that cause
the more chaotic behavior. The preferred solution
would appear to be the DARE-only terminal con-

7

dition for its smoothness. In addition to the above,
there is larger total control action in the modified
DARE solution. This would imply that there would
be a higher energy use in this controller, which is an
important consideration when weighting controller
schemes in energy-limited drone platforms. Further
analysis could be done using economic MPC in
future work.

1) Error Convergence
This section will cover the convergence of the

position and velocity error for the DARE and mod-
ified DARE terminal conditions.

(a) DARE Solution

(b) DARE Solution + Tuned Q Matrix

Fig. 6: Position Error Measurements

In Figure 6, the DARE and modified DARE
solutions show similar convergence along the z

measurement. However, the modified DARE shows
larger deviations in the x and y coordinate, which
can be confirmed by the path in Figure 4b.

(a) DARE Solution

(b) DARE Solution + Tuned Q Matrix

Fig. 7: Velocity Error Measurements

In Figure 7 larger total variances in velocity are
also seen in the modified DARE solution when
compared to the DARE-only solution. However,
these variances are not necessarily indicative of
an inferior controller as they could produce faster
convergence to the landing platform. There is
marginally faster convergence, but this also intro-
duces more perturbations in the velocity. Given that
these could induce instabilities in non-disturbance-
free environments, the DARE solution is the optimal
choice for terminal conditions for the controller.

8

2) Computation Time

As mentioned earlier, a secondary consideration
for this controller was its ability to compute control
actions in-the-loop. This would be a vital require-
ment if it were to fly in the real world instead of
along precomputed paths. For the current iteration
of the linearized controller, good but not perfect
performance is seen.

Fig. 8: Computation Time of Control Action

In Figure 8 there are 16 computations that exceed
0.01 seconds out of the 995 time steps that are run.
Over 10 runs, the mean number of computations
that exceed the sampling time is 7.1, accounting for
0.71% of all runs. With some controller optimiza-
tion, a faster processor, or more efficient code, it is
realistic to think that this controller could run in-
the-loop at 100 Hz given any of these adjustments.

3) Tracking Noisy Measurements

One of the benefits of the integrator controller is
that it can guarantee offset-free reference tracking
in the presence of constant errors, and shows good
convergence for random errors. This was tested
using the linear landing platform track. The results
are discussed below.

Fig. 9: Path with Noisy Measurements

In Figure 9 the quadrotor is provided with noisy
position and velocity measurements on the order of
Np(0, 0.05) and Nṗ(0, 0.01). These measurements
are shown in gold and the filtered position is shown
in blue. This controller shows good, but not offset-
free, tracking in the presence of these disturbances.

B. Nonlinear Landing Platform Motion

Prior sections have discussed the quadrotor’s
behavior when tracking a landing platform that is
moving linearly. However, this is not a realistic case
in many environments as the landing platform will
have to maneuver in urban or suburban environ-
ments. To test the controller in a more realistic
setting, a nonlinear path is generated for testing the
quadrotor’s ability to track and land on the platform.
Similar to the last section, the landing platform is
moving at 1 m/s, but now follows an elliptical path
with a major axis of 1 m and a minor axis of 0.5 m.
The results of this simulation are discussed below.

9

(a) Quadrotor Path

(b) Control Action

Fig. 10: Path and Control Action

Figure 10 shows that the tracking for the turning
formulation is not as good as the tracking of the
linear landing platform. In the 10 second run of
the simulator, the minimum position tracking error
occurs at 6.63 seconds at a distance of 8 cm. This is
similar to the convergence of the linear controller,
albeit at twice the convergence time. However, the
magnitude of the velocity error at this point is
0.23 m/s with a vector form of

[
0.06 0.22 0

]
,

meaning that the quadrotor will overshoot the cart
in the y direction on this approach, as seen in Figure
11. One modification that could be made to the
control to account for this error in future work
would be the inclusion of a Kalman estimator for
the landing platform’s position. Given past position

and velocity measurements, this estimator could be
used as part of the MPC model to minimize tracking
error through time.

(a) Position Errors

(b) Velocity Errors

Fig. 11: Errors for Turning Landing Platform

VI. CONCLUSIONS AND FUTURE WORK
This paper demonstrated the efficacy of a lin-

earized model predictive controller using a modified
state of ∆ values and error terms. This controller
builds integrator control directly into the solution,
allowing for offset-free reference tracking in the
presence of constant errors. The controller also
shows good convergence for noisy position and
velocity measurements, though it is not offset-free
and maintains some error. These results also demon-
strate the controller is able to track a landing plat-

10

form moving in a non-linear path, in this experiment
an ellipse, though it does not show convergence to
zero error in the simulation as the linear tracking
did.

Future work for this controller is mentioned
throughout the paper. Some pieces that require
further investigation or work would be an analysis
of using economic MPC to minimize the energy
consumption of the control actions as these MAVs
are generally highly energy constrained. Addition-
ally, the implementation of a Kalman estimator into
the controller, which would likely provide better
tracking in the nonlinear case, remains an avenue
to minimize controller errors. Additionally, this
controller will be implemented onto Crazyflie 2.0
drones in the coming months in order to test the
controller’s real-world efficacy in landing a drone
on a moving platform.

A nonlinear controller was also planned. This
nonlinear controller was not working at the time
of writing and additional work will be put into
finishing this controller at a future date.

REFERENCES

[1] Dennis S. Bernstein and Ankit Goel. Geometry, Statics,
Kinematics, and Dynamics, chapter 7.9 Euler’s Equation for
the Rotational Dynamics of a Rigid Body. 2021.

[2] Julian Förster. System identification of the crazyflie 2.0 nano
quadrocopter. Master’s thesis, ETH Zurich, Zurich, 2015-08.

[3] Dada Hu, Zhongcai Pei, and Zhiyong Tang. Single-
parameter-tuned attitude control for quadrotor with unknown
disturbance. Applied Sciences, 10(16), 2020.

[4] Ilya Kolmanovsky. Lecture on discrete time linear systems
theory, module 2, 2021.

[5] Ilya Kolmanovsky. Lecture on discrete time linear systems
theory, module 5, 2021.

[6] Pengcheng Wang, Zhihong Man, Zhenwei Cao, Jinchuan
Zheng, and Yong Zhao. Dynamics modelling and linear
control of quadcopter. In 2016 International Conference
on Advanced Mechatronic Systems (ICAMechS), pages 498–
503, 2016.

APPENDIX A
Ad AND Bd MATRICES

Ad(1 : 6) =

1.0 0 0 0.01 0 0
0 1.0 0 0 0.01 0
0 0 1.0 0 0 0.01
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Ad(7 : 12) =

0 0 0 0 0 0
0 −4.9e−4 0 0 −1.6e−6 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −0.098 0 0 −4.9e−4 0
0 0 0 0 0 0
1.0 0 0 0.01 0 0
0 1.0 0 0 0.01 0
0 0 1.0 0 0 0.01
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0

Bd =

0 0 0 0
2.79e−6 2.70e−6 2.79e−6 −2.70e−6
3.12e−4 3.02e−4 3.12e−4 3.02e−4

0 0 0 0
−1.11e−3 1.08e−3 1.11e−3 −1.08e−3

0.062 0.060 0.062 0.060
0.034 0.033 −0.034 −0.033
0.034 −0.033 −0.034 0.033

−1.78e−3 1.72e−3 −1.78e−3 1.72e−3
6.85 6.64 −6.85 −6.64
6.82 −6.60 −6.82 6.60

−0.356 0.344 −0.356 0.344

APPENDIX B

BLOCK DYNAMICS

∂

∂t

x
y
z
ẋ
ẏ
ż
φ
θ
ψ

φ̇

θ̇
ψ̇

=

ẋ
ẏ
ż

(cos(ψ)sin(θ)cos(φ)+sin(ψ)sin(φ))
∑4
i=1(fi)

sin(ψ)sin(θ)cos(φ)−cos(ψ)sin(φ))
∑4
i=1(fi)

cos(θ)cos(φ)
∑4
i=1(fi)−g

φ̇

θ̇
ψ̇

I−1
xx (τφ+(Izz−Iyy)φ̇)
I−1
yy (τθ+(Ixx−Izz)θ̇)
I−1
zz (τψ+(Iyy−Ixx)ψ̇)

APPENDIX C

MATLAB PRINTOUT

